On the Congruence ax + by = 1 Modulo xy

نویسندگان

  • Juliusz Brzezinski
  • Wlodzimierz Holsztynski
  • Pär Kurlberg
چکیده

We give bounds on the number of solutions to the Diophantine equation (X+1/x)(Y +1/y) = n as n → ∞. These bounds are related to the number of solutions to congruences of the form ax+by = 1 modulo xy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ON THE CONGRUENCE ax

We give bounds on the number of solutions to the Diophantine equation (X +1/x)(Y +1/y) = n as n tends to infinity. These bounds are related to the number of solutions to congruences of the form ax + by ≡ 1 modulo xy.

متن کامل

Extensions of Wilson ’ S Lemma and the Ax

Recently R. M. Wilson used Fleck’s congruence and Weisman’s extension to present a useful lemma on polynomials modulo prime powers, and applied this lemma to reprove the Ax-Katz theorem on solutions of congruences modulo p and deduce various results on codewords in p-ary linear codes with weights. In light of the recent generalizations of Fleck’s congruence given by D. Wan, and D. M. Davis and ...

متن کامل

Extensions of Wilson ’ S Lemma and the Ax - Katz Theorem

Recently R. M. Wilson used Fleck’s congruence and Weisman’s extension to present a useful lemma on polynomials modulo prime powers, and applied this lemma to reprove the Ax-Katz theorem on solutions of congruences modulo p and deduce various results on codewords in p-ary linear codes with weights. In light of the recent generalizations of Fleck’s congruence given by D. Wan, and D. M. Davis and ...

متن کامل

Sums of Products of Congruence Classes and of Arithmetic Progressions

Consider the congruence class Rm(a) = {a + im : i ∈ Z} and the infinite arithmetic progression Pm(a) = {a+im : i ∈ N0}. For positive integers a, b, c, d,m the sum of products set Rm(a)Rm(b)+Rm(c)Rm(d) consists of all integers of the form (a+im)(b+jm)+(c+km)(d+lm) for some i, j, k, l ∈ Z}. It is proved that if gcd(a, b, c, d,m) = 1, then Rm(a)Rm(b) + Rm(c)Rm(d) is equal to the congruence class R...

متن کامل

An Account of Congruences Mod pk Using Halley’s Method

In this paper we find solutions of congruences of the form ax ≡ b(mod p), k≥1 where a, b and n>0 are integers which are not divisible by a prime p using Halley's iterative algorithm. An algorithm is also proposed to reduce the degree of a nonlinear congruence modulo p. AMS Mathematics Subject Classification (2000): 05C25 • 11E04 • 20G15

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Experimental Mathematics

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2005